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CONDITIONALLY PERIODIC NOTIONS IN TNE ATTRACTION FIELD 
OF A ROTATING TRIAXIAL ELLIPSOID* 

S.G. ZHURAVLFS' 

Conditionally perichiic solutions are constructed in the neighbourhood of 
previously derived steady-state solutions of the problem of the motion of 
a material point in the attraction field of a rotating triaxial ellipsoid, 
when the average motion of the material point and the ellipsoid angular 
velocity of rotation are commensurable. 

The problem of the motion of a material point in the attraction field of a homogeneous 
triaxial ellipsoid (or non-homogeneous ellipsoid with ellipsoidal layers of the same density) 
uniformlyrotatingabout one of its principle central axes of inertia was previously considered 
in /l-4/. Families of steady-state solutions (motions) were obtained in f4/, when the 
average motion of the material point and the angular velocity of the ellipsoid are commensur- 
able, and the existence of conditionally periodic solutions (motions) in their neighbourhood 
was proved. 

The purpose of the present paper is to construct conditionallyperiodicsolutionsofthis 
problem, and to establish the properties of such motions of a material point. The method of 
constructing the conditionally periodic solutions of canonical systems of differential equa- 
tions is used when the frequencies are strictly commensurable /5/. 

1. The equations of motion and the Hamiltonian. Consider a rotating system of 
coordinates OXYZ, whose axes lie along the principal central axes of inertia of a triaxial 
ellipsoid. The OX and OY axes coincide with the minor and major axes of the ellipsoid equat- 
iorial cross section, respectively, and the 02 axis coincides with the ellipsoid axis or 
rotation. 

The material point equations of motion in the triaxial ellipsoid attraction field can be 
represented in the rotating system of coordinates OXYZ in the form 

dx,ldT = aF’/ay,, dyJdr = --aF’18xj, j = 1, 2, 3 (1.1) 

Xl = L = I/;, y, L 1 = M 

x2 = G = v’u (1 - e2), y, = g = 0 

x3 = H = jfu (1 - e”) cos 1, y, = k = $2 - mot 

(l-2) 

where zR1 yf are the Delaunay canonical variables, u,e, i,M,fE and o represent the conven- 
tional system of Keplerian osculating elements, o,, is the angular velocity of rotation 
ellipsoid, and z is the dimensionless time, while the Hamiltonian F’ has the following 
ure: 

F’ = F,’ -+ uF1’, x < 1 

1 -2 Fo=--l1 +x*6& 2 
F;= z ~k(x)COS(k, y) 

IIU~O 

k = (k,, k,, k,), (k, y) = kg, + b, + b/m II kll = I k, I t I k, I + 1 kz I 

The explicit form of the coefficients Al,(x) will be given later. 

of the 
struct- 

(1.3) 

2. Steady-state motions. To investigate the steady-state conditionally periodic 
motions of a material point in the triaxial ellipsoid attraction field, defined by a commensur- 
ability of the form nim, = sip (n is the material point mean motion, w. is the angular velocity 
of rotation of the ellipsoid, and s= p + q, p, q are integers), it is more convenient to use 
the system of variables /4/ 

x, = SL - pH, Y, = us 

X,=G- H, Y,=g 

X, = N, Y, = plls -t- g i- h 

the substitution of which into (1.1) yields 

(2.1) 
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COT, I at = aF I ay,, dY, I a7 = -aF I ax,, i = 1, 2, 3 

F = F, + xF, 

F 0 = + 9 (Xl + PXS)’ + wlx3 

F, = 
c 

AL* (X) cos [(k,s + pm) YI + kzYz i- ksYs] 
NkfI>cK m=o. il. f? 

(2.2) 

(2.3) 

Using the method described in /5/ we separate from the perturbing part F, of Hamiltonian 
F the secular part FiPc, the resonant part (including the long-period part) FF, and the 
short-period part F,'P: 

where the primes 
particular (k,s + 

Gp (Xj, Yj) = mqo Ak* (Xj) cos [(k~s f mp) YI f ksY* + ksYs] (2.5) 

in Eq.(2.5) indicate that the vector k takes only non-resonant values, in 

mp) # 0. 
To determine the steady solutions of (2.2) with the Hamiltonian (2.3)-(2.5) and to con- 

struct the conditionally periodic solutions in their neighbourhood we introduce, using a 
transformation similar to a Zeipel transformation, the canonical replacement of variables by 
the formulas 

F(Xj*)= & (Xl fpX!J)-'(3c(- 1)~3'o(Xj) 

FF (Xj, Yt, Ys) = + xbrd (Xl + pxsy' f: @v 
v=1 

(2.4) 

ah = (1 - a”) G’” cos [(kls - 2p) Y1 - 2Yg + 2Y,] 

G =+(l -/- a)s(Cif’2+ Si~*2)co~[(kls-2p~Y1 + 2YJ] 

& I= + (1 - a)2 (&f*’ - Si:$os [(ks - 2p) Y, - 4Y9 + 2Ys-j 

a = X3/(X2 + X3) 

P=X+x'$Y=Q +x~.P=(P,,P,,P,),Q=(Q,,Q,,Q,) (2.6) 

where P and Q are the new canonical system of variables, and ?tS (P. r) is a small generating 
function. The function that generates transformation S (P, Y) is selected so that the new 
Hamiltonian does not contain short-periodic terms O(x) (for details see /5/). 

Substituting (2.6) into (2.2), we obtain 

dQ +_!K,--=-?!.L 
W 

FL (P, Q) = F,* (P) + ii,* (P, Qm QJ + x'F,* V'. 0) 
(2.7) 

F1’ (P, Q,, 0s) = F:” (P) + r (P, Qm QJ 
To obtain the explicit form of the functions FL and F,*, and others it is sufficient to 

replace X by P and Y by Q in (2.3) and (2.4). 
Neglecting in Eqs. (2.7) the short-period terms 0(x') (the secular and resonance compon- 

ents x2F,* (P,Q) can be included in the functions Fy and F:“, respectively), we will seek 
steady-state solutions of (2.7) in the form 

P, = Pj, = cons& j = 1, 2, 3 (2.8) 

Qi = Qro = const, i = 2. 3; Q1 = QIo + o,z 

The necessary conditions for steady-state solutions of the form (2.8) to exist are as 
follows /6/: 

dFj _ tiFI* 
dr _-to, j-1,2,3 

‘Qj 

a5 aF @, YdF,* 
_=--apl=w,, r=-dP,= 0 

l7T 

T=-$~O (F=Fo*+xFl*) “Vs 

(2.9) 

Let us consider conditions (2.9) in succession. 
The first condition is automatically satisfied when j = 1 (since the function F is 

independent of the rapid variable QJ, and when j = 2,3 it is satisfied, if Qp = Qlo= k,*ni2 
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and g8 = Qso = k,* n/2, and k,*, k,* are integers. The fourth condition is satisfied, if the 
satellite mean motion is selected from the relation 

n = sp 10~ + x (ps-laF,*laL + aF,*IafqI (2.10) 

A computer is used to check the third condition, which we will write in the form aF,*/ 
ap, = m (e, i) = o,, and the solution defines the dependence between Pzand P, (actually between 
e and il in the steady-state solution (see /4/). Finally, the second condition yields the 
expression 

m1 = p-l (~0~ + xaF,*IaH) (2.11) 

The necessary conditions (2.9) can, thus, all be satisfied (and this indicates their 
sufficiency), and steady-state solutions of the form (2.8) do exist. 

Steady-state motions of a material point that correspond to the steady-state solution 
(2.8) have, in Keplerian elements, the followins properties (generally e#O, if0 ): 

1) the material point moves over an elliptic orbit of constant dimensions and inclina- 
tion to the ellipsoid equatorial plane with an average motion n somewhat different from the 
exactly commensurable form S/PO,, and the major semi-axis of the orbit a depends on the form 
of the commensurability s/p, and e and i are related by the equation @(e,i) = 0 and depend 
on the form of commensurability; 

2) the line of apsides of the orbit is stationary in the rotating system of coordinates 
OXYZ and is constantly oriented along the meridian of the minor or major semiaxes, respectiv- 

ely, of the ellipsoid equatorial cross section; 
3) the orbit line of nodes*processes in the rotating system of coordinates at a low 

velocity W' = - xaF,*IaH; 
4) the mean longitude Q3 of the material point remains constant in the rotating system 

of coordinates coinciding with the meridian of the major or minor semiaxes of the ellipsoid 
equatorial cross section; 

5) the rapid angular variable Qlvaries in such a way that the material point, when the 
period Z', = &c/o, expires, appears on the same meridian to which the value of QIo corresponds; 
at the same time the period of rotation of the ellipsoid (T,=2n/o,), the period of rotation 
of the material point (T = k/n) , and the period of variation of the rapid variable (T, = 
2x/r& are connected by the following relations: 

T, = pT, (1 + 0 (x)), T, = ST (1 + 0 (x),, (0 (x) = - SW,,+ aF,*/aH) 

As a result of the motion described, the material point is on the same original meridian 
after p rotations of the ellipsoid about its own axis or after s rotations of the material 
point on the orbit. 

We will now construct conditionally periodic solutions (motions) in the neighbourhood of 
the steady-state solutions (motions) obtained. 

3. The generating function. The short-period terms FT’ of the Hamiltonian were 

eliminatedusing the generating function S (P, Y) which is dependent onthe structure and form 
of F,J”. 

To obtain conditionally-periodic solutions in several systems Of elements (variables) we 
will write xFlsp using the Kepler position elements a,.e, and i, the Delaunay angular vari- 
ables 1, y and h, and also the variables (X, Y). 

As the result we obtain 

&P(a,e,i,l,g,h)=% B~>o&,(a.e, i)ces(kl+ 2"g) + 

x2 ,,z& &, (6 6 i) COS (kl + 2vg f 2Sh) 

k, = (k, ZY), k, = (k, 2v, 2e), v = 0; +I, e = il 
-xa<k.<cc 

(3.1) 

where Cknsm (e), Sk"*"' (a) are known expansions in powers of e /7/. 
To obtain now the explicit form of the function XP *P 1 it is sufficient to substitute 

X, Y, for a,..., h in (3.1) using (1.2) and (2.1). 
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Using (3.1) for the short-period part of x F1” we select the generating function S of 
transformation (2.6) in the form of the sum 

s = sr + s, (3.2) 

where 

sz (a, e, i, z, g, h)=x;F~l Sk2 (a, 6 4 sin Ckz f 2 ‘g + 2eh) 

or 

(3.3) 

(3.4) 

The primes on the summation sign indicate that they contain no long-period and resonance 
terms (i.e. k+O in (3.3) and kr-2pe#O in the first of expressions (3.411, that are 
already included in the function XFr'". 

Taking the small parameter as x - IO-*, we will confine ourselves to constructing condit- 
ionally periodic solutions to a first approximation (in the steady-state solutions the secular, 
long-period, and resonance terms of the perturbing function 0(x2) are taken into account). In 
this connection we shall only consider the part Sr -O(x) in the generating function s and 
retain a finite number of harmonics k$N=iO ( as k increases the amplitude of the corres- 
ponding harmonic decreases). 

Taking the above into account, we have 

XS = xS1 = x k$ S, (a, e, i) sin (kl + 2rg) = (3.5) 

x gS,(P)sin(ksY1+ 2vYa); v-_&i 
k-1 

Sr (a, el i) = - &(a, e, i) 1 (kl, M 1 kz); cc = a, e, i 

Sk (p) = - dk, (P) ) (k,, #* 1 L@) 

P* (P) = To* (P) + XFy (P) 

Taking the last relation into consideration, we can write the coefficients in their final 
form 

Sr (P) = -&t,(P) / d +o (X) (3.6) 

4. The conditionally-periodic solutions, The steady-state solutions obtained 
and described in Sect.2 and, also, the explicit formbf the generating function of transforma- 
tion (2.61, enable us to write conditionally periodic solutions in several systems of vari- 
ables. 

The conditionally periodic solutions in IP,Q) variables. Using the general formulas of 
conditionally periodic solutions 15, 6/, we obtain P,g the values of the variables P and Q 
in the steady-state solution (see (2.8)) 

Pi(r)=Fi +x~$fp*(P,)coa(k. ?j); i=l, 2,3; j-1, 2 (4.1) 

Oi (T) = ?i + % kgfQk tp*) sin lk* Qj) 

Pi=Pim QI = QIO -~-WC &=Qsw Qs=Qsa 

(kQj)=[~(Q1~ -toIT)+ ~~Qso] 

+- 
( 00+x 

~FI* (Pi, Q?. 'A) 
a& )I PiJ$.Q&‘ 

fPk (pi) = k&a (p) ipi+ 
q.(P) 

/Ok tpi) = - ap 
I 
p,a 

The conditionally periodic solutions in mixed variables. Using the expressions 
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n = ss (Xl + pxp, e = 11 - SL (X, + x,1* (X, + pxp1” 

izarccos XS (-); Y12, Y*=g, Y,,A+g+h 
A,+& 

derived from (1.2) and (2.1), we can write the conditionally periodic solutions in mixed 
variables 

?Z=ii -3x$/s-l-$., e=gS_ (4.2) 

Yz=Q*++% + 
L + 

n~~~(l-~~)"~~p(1-~~)-8] as -- 
3Sd ae 

rs'~~(cos;-l) as 
3 ais i (1 - g)‘/* ai 1 

.- as .,=Q2+%[-$&+-,] 
)/l-G 

where 6, is the value of the element aj in the steady-state (2.8) (a, = n,a,t, QJ. 

The conditionally periodic solution in Kepler-Dekwnay variables. 

3s n=.ii-33xi’la-, a2 
e = d + g@$‘/’ (1 - q/1. (4.3) 

where or is defined by (2.101, and ms = -pal/s. In addition we must substitute into the 
derivatives &S/&z, the steady-state values 6j= ?i, E,T, 1, g and Ti. 

The conditionally periodic motions of a material point defined by solutions (4.1), (4.2), 
and (4.3) have virtually the same character in all systems of variables: short-periodic oscil- 
lations of amplitude O(x) are imposed on the steady motions. The difference is solely that in 
certain systems of variables the separate angular variables have constant steady motions (for 
instance, the variables Qsand Qsin (4.1) and (4.2) and the variable g in (4.3)) while all 
the remaining angular variables are linear functions of time. 
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